Galactosylated Liposomes for Targeted Co-Delivery of Doxorubicin/Vimentin siRNA to Hepatocellular Carcinoma
نویسندگان
چکیده
The combination of therapeutic nucleic acids and chemotherapeutic drugs has shown great promise for cancer therapy. In this study, asialoglycoprotein receptors (ASGPR) targeting-ligand-based liposomes were tested to determine whether they can co-deliver vimentin siRNA and doxorubicin to hepatocellular carcinoma (HCC) selectively. To achieve this goal, we developed an ASGPR receptor targeted co-delivery system called gal-doxorubicin/vimentin siRNA liposome (Gal-DOX/siRNA-L). The Gal-DOX/siRNA-L was created via electrostatic interaction of galactose linked-cationic liposomal doxorubicin (Gal-DOX-L) on vimentin siRNA. Previous studies have shown that Gal-DOX/siRNA-L inhibited tumor growth by combined effect of DOX and vimentin siRNA than single delivery of either DOX or vimentin siRNA. These Gal-DOX/siRNA-Ls showed stronger affinity to human hepatocellular carcinoma cells (Huh7) than other cells (lung epithelial carcinoma, A549). These liposomes also have demonstrated that novel hepatic drug/gene delivery systems composed of cationic lipid (DMKE: O,O'-dimyristyl-N-lysyl glutamate), cholesterol, galactosylated ceramide, POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), and PEG2000-DSPE (distearoyl phosphatidyl ethanolamine) at 2:1:1:1:0.2 (moral ratios) can be used as an effective drug/gene carrier specifically targeting the liver in vivo. These results suggest that Gal-DOX-siRNA-L could effectively target tumor cells, enhance transfection efficacy and subsequently achieve the co-delivery of DOX and siRNA, demonstrating great potential for synergistic anti-tumor therapy.
منابع مشابه
Local Targeted Therapy of Liver Metastasis from Colon Cancer by Galactosylated Liposome Encapsulated with Doxorubicin
Since regional drug administration enables to maintain a high drug concentration within tumors, we compared the plasma concentration and biodistribution of doxorubicin (Dox) from drug-loaded conventional liposomes by local or systemic administration. The results demonstrated that drug concentration was substantially improved in liver as well as a decrease in blood and other organs by spleen inj...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملCo-delivery of Doxorubicin and Bmi1 siRNA by Folate Receptor Targeted Liposomes Exhibits Enhanced Anti-Tumor Effects in vitro and in vivo
Bmi1 gene overexpression is found in various human tumors and has been shown as a potential target for gene treatment. However, siRNA-based treatments targeting Bmi1 gene have been restricted to limited delivery, low bioavailability and hence relatively reduced efficacy. To overcome these barriers, we developed a folate receptor targeted co-delivery system folate-doxorubicin/Bmi1 siRNA liposome...
متن کاملFormulation of a therapeutic cationic liposome-siRNA complex for development to fight osteosarcoma
Introdution: Cationic liposomes have been presented for gene delivery as an alternative vector instead of viral vectors. A major challenge associated with siRNA delivery is the instability of liposomes, which is still a serious problem. The aim of this study was to provide an appropriate formulation to overcome this instability. Methods: In the present study (Scientific-Fundamental, Experiment...
متن کاملCo-Delivery of Doxorubicin and SATB1 shRNA by Thermosensitive Magnetic Cationic Liposomes for Gastric Cancer Therapy
In previous a study, we had developed a novel thermosensitive magnetic delivery system based on liposomes. This study aimed to evaluate the efficiency of this system for the co-delivery of both drugs and genes to the same cell and its anti-tumor effects on gastric cancer. Doxorubicin (DOX) and SATB1 shRNA vector were loaded into the co-delivery system, and in vitro DOX thermosensitive release a...
متن کامل